
Stock Market Price Prediction Using Linear and Polynomial Regression Models

Lucas Nunno
University of New Mexico

Computer Science Department
Albuquerque, New Mexico, United States

lnunno@cs.unm.edu

Abstract—The following paper describes the work that was
done on investigating applications of regression techniques on
stock market price prediction. The report describes the linear
and polynomial regression methods that were applied along
with the accuracies obtained using these methods. It was found
that support vector regression was the most effective out of the
models used, although there are opportunities to expand this
research further using additional techniques and parameter
tuning.

Keywords-stock market; regression; machine learning;

I. INTRODUCTION

The stock market is known to be a complex adaptive
system that is difficult to predict due to the large number
of factors that determine the day to day price changes. We
do this in machine learning through regression which tries to
determine the relationship between a dependent variable and
one or more independent variables. Here, the independent
variables are the features and the dependent variable that
we would like to predict is the price. It is apparent that
the features that we are using are not truly independent,
we know that the volume and outstanding shares are not
independent as well as the closing price and the return
on investment not being independent. However, this is an
assumption that we are making to simplify the model in
order to use the chosen regression models.

This study aims to use linear and polynomial regres-
sion models to predict price changes and evaluate different
models’ success by withholding data during training and
evaluating the accuracy of these predictions using known
data.

This research concerns closing prices of stocks, therefore
day trading was not modeled. The model for the stock
market was only concerned with the closing price for stocks
at the end of a business day, high-frequency trading is an
area of active research, but this study preferred a simplified
model of the stock market.

II. MOTIVATION

Stock market price prediction is a problem that has the
potential to be worth billions of dollars and is actively
researched by the largest financial corporations in the world.
It is a significant problem because it has no clear solution,
although attempts can be made at approximation using many

different machine learning techniques. The project allows
techniques for real-world machine learning applications in-
cluding acquiring and analyzing a large data set and using
a variety of techniques to train the program and predict
potential outcomes.

III. RELATED WORK

A variety of methods have been used to predict stock
prices using machine learning. Some of the more interesting
areas of research include using a type of reinforcement
learning called Q-learning [5] and using US’s export/import
growth, earnings for consumers, and other industry data to
build a decision tree to determine if a stock’s price will rise
or fall [3].

The Q-learning approach has been shown to be effective,
but it is unclear how computationally intensive the algorithm
is due to the large number of state alphas that must be
generated. The decision tree approach may be particularly
useful when analyzing a specific industry’s growth. There
has also been research done as to how top-performing stocks
are defined and selected [7] and analysis on what can
go wrong when modeling the stock market with machine
learning [4].

IV. METHODS

A. Data Representation

The dataset that was used was collected from the CRSP
US Stock Database [2] as a collection of comma-separated
values where each row consisted of a stock on a specific day
along with data on the volume, shares out, closing price, and
other features for that day in time.

The Python scientific computing library numpy was used
along with the data analysis library pandas in order to
convert these CSV files into pandas DataFrames that were
indexed by date. Each specific stock is a view of the master
DataFrame that is filtered based on that stock’s ticker. This
allowed efficient access to stocks of interest and convienient
access to date ranges.

These stock DataFrame views are then used as the data
to be fed into our regression black boxes.

1



Figure 1: Data-flow of the program showing how stock data turns
into prediction value vectors.

B. Prediction through Regression

The regression process is done through the scikit-learn
[1] machine learning library. This is the core for the price
prediction functionality. There are some additional steps that
must be done so that the data can be fed into the regression
algorithms and return plausible results. In particular, every
training dataset must be normalized to a Gaussian normally
distributed or normal-looking distribution between -1 and 1
before the input matrix is fit to the chosen regression model.

1) Data Normalization: There are a couple important
details to note about the way the data must be preprocessed
in order to be fit into regression models. Firstly, dates are
normally represented as strings of the format ”YYYY-MM-
DD” when it comes to database storage. This format must
be converted to a single integer in order to be used as a
column in the feature matrix.

This is done by using the date’s ordinal value. In Python,
this is quite simple. The columns in the DataFrame are stored
as numpy datetime64 objects, which must be converted to
vanilla Python datetime objects which are in turn converted
to an integer using the toordinal() built-in function for
datetime objects.

Each column in the feature matrix is then scaled using
scikit learn’s scale() function from the preprocessing mod-
ule. Note that this is a very important step, as prior to this,
the polynomial regression methods would return question-
able results since it is documented that the scikit learn’s
non-linear regression models assume normally distributed
data as the input for feature matrices.

2) Types of Regression Models: The price prediction
function provides a few regression models that can be chosen
to perform the prediction. This includes

1) Linear Regression
2) Stochastic Gradient Descent (SGD)
3) Support Vector Regression (SVR)
Please note that these were the regression models that

were evaluated, not all had promising results. The results
section goes into detail of the difficulties faced with each
regression model and the attempts at the solutions.

The linear regression method initially seemed to be
working well, but there were some difficulties using the
polynomial regression methods, since the predictions that
are being returned did not look like a non-linear fitting.

C. Stock and Date Selection

The stocks that are used in this study are a subset of the
stocks that are publicly traded on the US market known

as the S&P 500, which is an index of the 500 largest
companies traded on the NYSE or the NASDAQ. The CRSP
dataset that has been provided contains on the order of 5000
companies, so this data is filtered as it is loaded into the
master DataFrame to avoid excessive memory usage.

D. Regression Model Evaluation

There are a number of scoring methods for regression that
are implemented in scikit learn, such as explained variance
score and mean squared error.

Figure 2: An illustration of the random sampling of both stocks
and dates done by the software in order to obtain error metrics.
These metrics are then compared against other regression models’
results to evaluate their performance.

While these algorithms were investigated, it seemed to be
more beneficial for this problem domain to implement mean
absolute percentage error and use this in order to compare
stocks of significantly different prices. Mean absolute error
was used in the context of inspecting a single stock, where
price difference was bound not to vary as much as comparing
to disparate companies.

V. RESULTS

Note that the following diagrams consistently use Apple’s
(AAPL) stock prices from 2006-11-16 to 2007-03-27. This is
strictly for comparison reasons and to consistently compare
regression methods with the same data. This date range

2



was chosen specifically for its troughs and plateau features
present in the date range since it would provide a sufficiently
challenging topography for the regression models and for
human experts as well. The evaluation described later uses
a random sampling of stock tickers and dates.

A. Linear Regression

Linear regression was less sensitive to normalization tech-
niques as opposed to the polynomial regression techniques.
Some plausible results were appearing early on in the study
even when a small number of features were used without
normalization, while this caused the polynomial regression
models to overflow. Linear regression also provided plau-
sible results after normalization with no parameter tuning
required due to its simplified model, although the accuracy
was less than would be desired if relying on the results for
portfolio building.

Figure 3: Price prediction for the Apple stock 10 days in the future
using Linear Regression.

It is interesting how well linear regression can predict
prices when it has an ideal training window, as would be the
90 day window as pictured above. Later we will compare
the results of this with the other methods

Figure 4: Price prediction for the Apple stock 45 days in the future
using Linear Regression.

Large training windows appeared to overfit for larger
prediction windows, as can be seen by Figure 4. However,
it appeared to be more accurate in instances where the price
deltas were consistent with the price trends over that same
period for relatively short buying periods over a couple of
weeks as seen in Figure 3.

B. Stochastic Gradient Descent (SGD)

At first, it appeared that Stochastic Gradient Descent
would be an appropriate fit to a problem of this type for long
term price prediction. However, since the dataset that was
used only covered the time period of 2005-2013 the training
data could only provide a maximum of (365 ∗ 8) = 2920
training samples to be used. Obviously, the stock exchange
is not open every day of the year, therefore this number
would be significantly lower. This appears to be a problem
according to the algorithm’s documentation source, since it
is only recommended to be used for problems with a training
set size of greater than 10,000.

The scikit-learn documentation mentions this with a few
suggestions for alternatives. [1]

The class SGDRegressor implements a plain
stochastic gradient descent learning routine which
supports different loss functions and penalties to
fit linear regression models. SGDRegressor is well
suited for regression problems with a large number
of training samples (> 10, 000), for other prob-
lems we recommend Ridge, Lasso, or ElasticNet.

Further along in the paper, we will investigate some of the
alternatives mentioned above, but this is also an opportunity
for future research on linear methods applied to this domain.

C. Support Vector Regression (SVR)

The scikit-learn documentation has an illustrative figure
of the differences of available kernels when using Support
Vector Regression. Below is the figure that shows what kind
of fitting is done using various kernels, note the difference
between the radial basis function (RBF) kernel and the other
two. [1]

3



Figure 5: Support Vector Regression data-fitting with a rbf, linear,
and polynomial kernel on a set of normally distributed data with
random noise introduced into the data-set.

1) Using the Polynomial Kernel: The degree of the
polynomial is by default set to 3, this setting was used for
the radial basis function as well.

Figure 6: Sample result of using the polynomial kernel with the
SVR. This data was trained on the previous 48 business day closing
prices and predicted the next 45 business day closing prices.

From the multiple trials performed, the polynomial kernel
tended to have better predictions for a subset of the testing
data, but then would tend to diverge abruptly from the
ground truth at varying periods. This behavior can be seen
above, where it diverges around the February 28th 2007 data
point.

Figure 7: Window size comparison for SVR using the polynomial
kernel.

2) Using the RBF Kernel:

Figure 8: Sample result of using the RBF kernel with the SVR.
This data was trained on the previous 48 business day closing prices
and predicted the next 45 business day closing prices.

The RBF kernel tended to fix this divergent behavior that
we were consistently seeing with the polynomial kernel.
However, it seemed to come at the cost of not as accurate
predictions at the beginning of the test data. Overall, the RBF
kernel performed the best on average for each day that it was
tested on. It is important to note that it doesn’t mean that its
results were always the most accurate. This depended quite
heavily on the training window, as linear and polynomial
regression were able to have more accurate predictions
than SVR with the RBF kernel. However, SVR with the
RBF kernel was the most consistent overall, therefore it’s
important to make this distinction.

Figure 9: Window size comparison for SVR using the RBF kernel.

Support vector regression with the rbf kernel was not very
sensitive to window size changes, which is very different
than linear and SVR with the polynomial kernel; which were
both very sensitive to window size changes.

D. Summary and Comparison

Below is a superimposed version of all the regression
methods discussed previously.

4



Figure 10: Comparison of several regression methods of a single
stock on a fixed time-frame and their training and testing models
visualized.

The following is the error of each of the regression
methods from the superimposed figure above. Note that error
here is measured in dollar amount, not percentage as it will
be in the following figures.

Figure 11: Mean absolute error for Figure 10.

When comparing the regression, mean absolute percent-
age error was used because of the high variation of stock
prices. This ensures that the results are not biased against
stocks with higher prices, since the error is calculated as the
percentage of that stock price that the prediction was off by.

Figure 12: Mean absolute percentage error of a 5 day stock price
prediction for the three regression methods.

Support Vector Regression with the RBF kernel performed
the best overall in the trials that we have run, with the
Linear and SVR with the polynomial kernel varying more
significantly. SVR with the RBF kernel had consistent short
term results of ≈ 5% mean absolute percentage error
(MAPE) while SVR with the polynomial kernel and linear
regression had ≈ 10% MAPE on average.

It is interesting to note that for a majority of the trials run,
we have found that smaller training window sizes almost
always had better results, with some of the best accuracies
at around 50 prior dates.

Figure 13: Mean absolute percentage error of a 180 day stock
price prediction for the three regression methods.

The results for 180 day price predictions were chosen to
provide insight onto the performance of these algorithms for
a longer period of time. Overall, SVR with the RBF kernel
performed the best, but it is interesting to note that SVR
with the polynomial performed better in comparison with
the rest of the algorithms on these longer time frames.

Linear regression performed very poorly when its window
size was small for long-term price prediction, but actually
ended up outperforming the other algorithms when their
window sizes tended to be on the order of years (365-400
days).

VI. CONCLUSION AND FUTURE WORK

Several issues have been addressed throughout the paper,
including the process of feature selection, normalization, and
training set window size. These issues warrant expansive
research on their own regard, but this research has done its
best to mitigate these factors by using features collected by
a top finance research institute [2] and algorithms that are
provided in an actively developed and maintained machine
learning library [1].

The subset of CRSP data that was selected was not
substantial enough on a global GDP level to create a decision
tree of buy/sell decisions based off the industry and sector
data as in [3], but future work could include data from

5



other sources corroborated with the CRSP data to perform
regression and/or binary buy/sell classification for whole
industries or sectors at once, if so desired.

It is interesting how linear regression can perform better
than polynomial methods at certain intervals due to the
reduced chance of linear regression overfitting the training
data. In some cases, we found that for long term projected
market fluctuations linear regression performed well. This
case was especially true when a polynomial method would
overfit the training data and have increased performance at
the beginning of the testing data, but at the cost of very
inaccurate results in the later prediction dates. Conversely,
linear regression was less accurate at the beginning of the
prediction, but wouldn’t perform as badly as a polynomial
regression method that diverged.

An opportunity for future research also emerges from ap-
plying additional linear and polynomial regression methods
to this problem. This software suite was architected in such a
way that the regression is only at one critical point such that
different regression algorithms can modularly be swapped in
and out as needed. This is also true of the parameters that can
be used for these algorithms, more research could be done
in this area since many of the parameters are embarrassingly
domain specific for regression models, which may result in
drastic performance increases.

Higher order polynomial regression methods were more
likely to overfit the training data than linear regression,
and it is quite often the case that it is situational of when
the right order of polynomial best fits the training data
without overfitting. Often, it is only apparent after we know
the ground truth of the prices, therefore it is difficult to
recommend to use most of these models for any high stakes
financial planning, be it personal finance or otherwise.

ACKNOWLEDGMENT

The CRSP dataset was generously provided by the Depart-
ment Chair of Finance at the University of New Mexico, Dr.
Leslie Boni.

I would also like to thank Dr. Trilce Estrada for providing
guidance on the project and helping to motivate the various
regression techniques used above.

REFERENCES

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[2] Center for Research in Security Prices The University of
Chicago. Us stock databases. web, 2014.

[3] C. Tsai, and S. Wang 2009. Stock Price Forecasting by
Hybrid Machine Learning Techniques. Proceedings of the
International MultiConference of Engineers and Computer
Scientists, 20-26, 2009.

[4] Hurwitz, E, and T Marwala. 2009. ”Common Mistakes when
Applying Computational Intelligence and Machine Learning to
Stock Market modelling.” University of Johannesburg Press.

[5] Lee, Jae Won, Jonghun Park, Jangmin O, and Jongwoo Lee.
2007. ”A Multiagent Approach to Q-Learning for Daily Stock
Trading.” IEEE TRANSACTIONS ON SYSTEMS, MAN,
AND CYBERNETICS 864-877.

[6] Wang, Yanshan, and In-Chan Choi. 2013. ”Market Index
and Stock Price Direction Prediction using Machine Learning
Techniques: An empirical study on the KOSPI and HSI.”
ScienceDirect (ScienceDirect) 1-13.

[7] Yan, Robert, and Charles Ling. 2007. ”Machine Learning
for Stock Selection.” Industrial and Government Track Short
Paper Collection 1038-1042.

6


